Progress In The Endovascular Treatment Of Type A Aortic Dissections

Carlos H. Timaran, MD
Chief, Endovascular Surgery
G. Patrick Clagett Professor in Vascular Surgery
Professor of Surgery
University of Texas Southwestern Medical Center
Dallas, TX, USA

Disclosures
- Cook Medical Inc, Research Support, proctoring
- Bolton Medical, Inc, Consulting

TEVAR for Type A Aortic Dissection (TAAD)

- Goals:
 - cover the origin of the intimal tear to prevent rupture
 - reduce pressure and promote thrombosis of the false lumen
- Contraindications
 - severe aortic valve regurgitation
 - involvement of the aortic root
 - Connective tissue disorder except as a temporizing solution

Challenges of endovascular ascending aortic repair

- complex spatial geometry
- great dynamic strain & changes in diameter/area during cardiac cycle
 - curved configuration
 - high blood flow
 - pulsatile movement
- Greatest changes in diameter 5 mm distal to coronaries arteries (~17%)
TEVAR for TAAD

- IVUS & angio to assess landing zones
- <10% oversizing based on PLZ
- PE > 5mm distal to coronary ostia
- DE may cover 1/3 of the IA origin
 - Left-to-right carotid-to-carotid bypass
- TVP (160-180 bpm) vs. Adenosine (36 mg IV)

TEVAR for TAAD

- 32%-50% of patients eligible
 - Absence of PLZ → #1 reason for exclusion
 - Carotid-to-carotid bypass to extend DLZ
- Complications
 - Stroke → ischemia vs embolism
 - 3.5%-5.5%
 - Excessive manipulation
 - Air embolism
 - Coronary artery coverage
 - Aortic valve dysfunction
 - Rupture or retrograde dissection
 - Endoleaks

TEVAR for TAAD

- 45 patients with entry tear in
 - Ascending aorta, 10
 - Arch, 14
 - Descending aorta, 21
 - Technical success, 97%
 - 30-day mortality, 6.7%

TEVAR for TAAD

- 2 strokes (left CCA conduit)
- Type I endoleak, 10 cases
- Ballooning of the PLZ
- Proximal cuff

TEVAR for TAAD

- PS-IDE
- Device designed specifically for deployment in the ascending aorta
 - 39 patients screened → 6 enrolled
 - No 30-day mortality
 - 1 late mortality / 1 stroke
 - 1 type 1A endoleak

FEASIBILITY OF ENDOVASCULAR REPAIR OF ASCENDING AORTIC PATHOLOGIES AS PART OF AN FDA-APPROVED PHYSICIAN-SUPPORTED INVESTIGATIONAL DEVICE EXEMPTION

- J Vasc Surg 2016;63:1483-95

FEASIBILITY OF ENDOVASCULAR REPAIR OF ASCENDING AORTIC PATHOLOGIES AS PART OF AN FDA-APPROVED PHYSICIAN-SUPPORTED INVESTIGATIONAL DEVICE EXEMPTION

- J Vasc Surg 2016;63:1483-95
ASCEND STENT-GRAFT

- International experience with endovascular therapy of the ascending aorta with a dedicated endograft
- 10 patients (Mean age, 67 years old)
- Zenith ASCEND stent-graft
- Dissection 5, aneurysm 4 and fixation of dislodged valve in 1
- Transfemoral approach in 8 and transapical in 2
- One 30-day mortality and one stroke (10%)
- Mean FU, 10 months (2 reinterventions)

ASCENDING STENT-GRAFTS

- From the Society for Vascular Surgery
- A systematic review of primary endovascular repair of the ascending aorta
- Thoracic stent-grafts (70%), AAA cuff (15%), custom (15%)
- Indications: acute dissection (50%), pseudoaneurysm (35%), PAU (5%)
- Type IA endoleak, 18%
- All cause mortality, 15%
- Stroke/ conversion (3.5% each)

Conclusions

- Current endovascular technology offers an alternative treatment option in selected high-risk patients with acute type A dissection who are unfit for surgical repair, which remains the standard of care
 - Acute type A aortic dissection and pseudoaneurysms in a redo setting
 - High STS operative risk score
- Current endografts are not disease-specific and based on current TEVAR and TAVR technology
- Future innovations need to provide disease-specific devices and solutions to expand the use of TEVAR for TAAD