Differing Patterns of Restenosis with Various Endovascular Treatments: What are the Implications for Determining the Best Treatment?

Lawrence A. Garcia, MD
Associate Professor of Medicine, Tufts University School of Medicine
Chief of Interventional Cardiology and Vascular Medicine, St. Elizabeth’s Medical Center
Boston, MA, USA

Disclosure Statement of Financial Interest

• Grant/Research Support
 - Abbott, Cordis/Medtronic
 - Cordis/Medtronic, Biori Scientific, Abbott
• Consulting (non-compensated)
• Major Stock Shareholder/Equity
• Royalty Income
• Ownership/Founder
• Intellectual Property Rights
• Other Financial Benefit
 - None

The Challenge of Femoropopliteal Artery Disease

• No single endovascular therapy has emerged as a "gold standard"
• All devices have primary patency, CD-TLR rates that on average seem similar from device to device
• However, to date we still do not understand the failure mode and restenotic pattern on any one device
• Benefits and limitations of existing scoring systems
 - Mehrotra, et al. and Tosoia, et al., developed a pragmatic and easily-applied system for stent-based restenosis classification
 - Both systems have demonstrated associations of restenosis type of class to outcomes
 - Limited to in-stent restenosis (ISR) classification, thus not applicable to TTA, UCG- and Atherectomy-based approaches
• Therefore, characterizing "the restenotic pattern" remains a critical component in advancing PAD standard of care and device specific treatment choices and may impact healthcare economics

Results: Scoring System

Type 1: Focal lesions <20% ITL
 - Edge proximal >2cm of proximal ITL margin
 - Edge distal >2cm of distal ITL margin

Type 2: Multifocal lesions
 - Multiple lesions combining to <50% ITL but with 3cm separation
 - Edge bilateral within 2cm of both ITL margins

Type 3: Moderate lesions
 - Lesions ≥20% but <50% of the ITL
 - Multiple lesions with <3cm separation

Type 4: Diffuse lesions
 - Lesions ≥50% ITL regardless of separation

Type 5: Occlusive lesions

Methods: Study Scope

• Inclusion Criteria
 - Medtronic Peripheral trials and registries
 - First TLRs ≤12mo of index procedure
• Exclusion Criteria
 - Unrevaluable or absent angiographic studies
 - Below-knee TLRs (as part of DEFINITIVE LE)

Analysis of Potential

Analytical Potential

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Cohort</th>
<th>Total Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN.PACT SFA PTA</td>
<td>111</td>
<td>22</td>
</tr>
<tr>
<td>IN.PACT SFA DCB</td>
<td>220</td>
<td>6</td>
</tr>
<tr>
<td>IN.PACT Global - Interim Analysis DCB</td>
<td>655</td>
<td>54</td>
</tr>
<tr>
<td>DEFINITIVE LE - Above-knee Atherectomy</td>
<td>655</td>
<td>139</td>
</tr>
<tr>
<td>DEFINITIVE AR Atherectomy+DCB</td>
<td>121</td>
<td>22</td>
</tr>
<tr>
<td>DURABILITY II BMS</td>
<td>287</td>
<td>33</td>
</tr>
<tr>
<td>Complete SE SFA BMS</td>
<td>196</td>
<td>18</td>
</tr>
<tr>
<td>IN.PACT Global ISR - Baseline ISR BMS</td>
<td>131</td>
<td>169</td>
</tr>
<tr>
<td>IN.PACT Global ISR - DCB treatment BMS+DCB</td>
<td>2376</td>
<td>486</td>
</tr>
</tbody>
</table>

Original study scope expanded to include 47 additional subjects as part of IN.PACT SFA continued follow-up through 4 years (Total 533 subjects)
Restenosis with Respect to Baseline Stenosis

- 256 TLRs analyzed
 - 457 total TLRs less 145 unevaluable and 56 disqualified as BTK lesions or restenoses <50%
- Focal lesions exhibited tendency to fail in a focal restenosis pattern
- Diffuse and occlusive lesions tended to fail in diffuse and occlusive patterns

Restenosis Pattern at TLR

<table>
<thead>
<tr>
<th>Baseline Pattern</th>
<th>Treatment Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal</td>
<td>PTA and Atherectomy+DCB tended to fail more focally than the others</td>
</tr>
<tr>
<td>Diffuse and Occlusive</td>
<td>However, this perspective does not account for differing baselines among cohorts</td>
</tr>
</tbody>
</table>

Restenosis with Respect to Treatment Modality

- 455 TLRs analyzed
 - 531 total TLRs less 8 unevaluable and 68 disqualified as BTK lesions or restenoses <50%
- PTA and Atherectomy+DCB tended to fail more focally than the others
- However, this perspective does not account for differing baselines among cohorts

Restenosis Pattern at TLR

<table>
<thead>
<tr>
<th>Treatment Modality</th>
<th>Restenosis Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>Often more diffuse-occlusive</td>
</tr>
<tr>
<td>Atherectomy+DCB</td>
<td>More focal</td>
</tr>
<tr>
<td>DCB</td>
<td>More diffuse</td>
</tr>
</tbody>
</table>

Restenosis with Respect to Treatment Modality and Baseline Stenosis

- Patterns Classification Tool enables accounting for baseline angiographic patterns
- PTA and Atherectomy+DCB tended to fail more focally than the others
- DCB cohort began with most occlusions

Progression of Restenosis: All Modalities

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Baseline Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Focal</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse and Occlusive</td>
</tr>
<tr>
<td>3</td>
<td>Diffuse and Occlusive</td>
</tr>
<tr>
<td>4</td>
<td>Occlusive</td>
</tr>
<tr>
<td>5</td>
<td>Occlusive</td>
</tr>
</tbody>
</table>

Restenosis with Respect to Time

- While DCB restenosis patterns appear evenly distributed from 1- to 4-years
- PTA patterns split between focal and diffuse-occlusive; concentrated in first ~12-months

Alternative method of analysis

- Working backwards from restenotic pattern to index stenosis

Progression of Restenosis: All Modalities

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Baseline Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Focal</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse and Occlusive</td>
</tr>
<tr>
<td>3</td>
<td>Diffuse and Occlusive</td>
</tr>
<tr>
<td>4</td>
<td>Occlusive</td>
</tr>
<tr>
<td>5</td>
<td>Occlusive</td>
</tr>
</tbody>
</table>

Restenosis failure reflects baseline stenosis pattern
Summary

- Existing restenosis scoring systems lack descriptive value for non-stent treatments and long, complex FPA lesions
- Proposed system provides all-inclusive nomenclature with more description of failure morphologies
 - These may provide for more information regarding subsequent therapy (ies)
- Potential determinant for index procedural technology
- The proposed “patterns of restenosis” may unify previous and future device trials regardless of technology
- Initial scoring “patterns” is effective and consistent among all modalities
- Upcoming analysis will incorporate subject specific data as to entry pattern and their failure mode and vice versa
- Additionally, we will evaluate time to TLR and device specific analysis to time to TLR